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5 Center of Theoretical Physics, CCAST (World Laboratory) and Huazhong University of 
Science and Technology, Wuhan, China 

Received 9 September 1987 

Abstract. In this paper we propose a new method, the alternating translational-dilation 
method (ATDM),  and use it in combination with the Monte Carlo technique to calculate 
the critical percolation probability for Sierpinski gaskets ( s G ) .  We obtain numerical 
evidence of the critical percolation probability P,= 1 for site problems on SG and an 
approximate relation P, = 1 - l /  N in two-dimensions, where N is the number of stages of 
SG. 

1. Introduction 

In recent years, fractal structures, both deterministic (self-similar) like the SG [ 1-31 
and stochastic (statistically self-similar) like the percolation clusters [ 1,4] at criticality, 
have been received much attention. SG lattices, consisting of sites connected by bonds, 
are valuable model systems for many theoretical purposes, including the study of phase 
transitions and the modelling of transport phenomena. 

In the study of fractals, SG embedded in d-dimensional Euclidean spaces are well 
suited both for analytical considerations [ l ,  3,5-71 and for numerical simulations [8,9]. 
We note that the SG result from this construction as the special case b = 2 ( b  is the 
number of layers of a smaller generator (a  basic geometric unit)) of Sierpinski-type 
fractals. In figure 1 we display Sierpinski-type fractal units in two dimensions (d  = 2) 
for the cases b = 2, 3, 5 and 10. Sierpinski-type fractal lattices are built up recursively 
by the ATDM (see 9 2) presented in this paper. 

Figure I .  Sierpinski-type fractal generators (basic geometrical units) for different b values 
in two dimensions. (a )  b = 2 ;  ( b )  3; ( c )  5 ;  ( d )  10. 
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In this paper we focus our attention on the SG. We illustrate their construction 
method by both formulae and figures, and use the method of construction, as well as 
the Monte Carlo technique, to compute the critical percolation probability for site 
problems on SG. 

The SG lattices have a finite order of ramification and neither finite-temperature 
phase transitions [ 5 ,  101 nor P, = 1 rigorously. Our results will support this conclusion. 

2. The alternating translational4ilation method of construction for Sierpinski-type 
fractal lattices 

The Sierpinski-type fractals form a family of self-similar structures, which can be built 
in any Euclidean dimension d (see figure 1). For the convenience of computing P, 
on SG numerically, one needs to transfer the geometry problem for SG lattices into a 
digital problem. In this paper, for Sierpinski-type fractal lattices as shown in figure 1 
we propose a transformation method, the alternating translational-dilation method 
(ATDM). We deduce the computational formulae for the ATDM as foilows. 

We first assign different initial values for sites of the smallest generator (a triangle), 
for example M(1, 1) = 1, M ( 2 ,  1) = 7 ,  M ( 2 , 2 )  = 2 (see figure 2 ( a ) ) .  

1 

&% -1 

2 2  

Figure 2. The construction of lattices for Sierpinski-type fractals. 

Then the generator is translated and dilated towards the lower end; the related 
sites (see figure 2 ( a ) )  are assigned according to the equation 

where 
M ( I , J ) = M ( Z - ( b - l ) b " - ' , J - b " - '  D )  (1) 

l S ? ? l S N  

Db"-'+ 1 ~ J s  I - ( b -  1 -D)b"- ' .  
( b  - l)b"-'+ 1 S I S  b" + 1 

Here m is the serial number of translation; I and J represent the rows and columns 
respectively, M ( I ,  J) is an element of arrays and D is a dilation parameter, 1 s D s 
b - 2 .  One should note, for b = 2 ,  that (1) is eliminated. 

When the generator is translated towards the lower left (see figure 2 ( b ) ) ,  the values 
of related sites are given by 

( 2 )  
where 

M ( I ,  J ) =  M ( I -  T X  bm- ' ,  J )  

1 S T S b - 1  n m - 1  + 2 s  I s ( T + l ) b " - ' +  1 
1 s J s  I - nm-' 

and T is a translation parameter. 
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Then the generator is translated towards the lower right (see figure 2( c))  and we have 

M ( I ,  J )  = M ( I  - Tb"-', J - nm-' ) 

n m - I  + 2 ~  I s  ( T +  l)b"- '+ 1 

(3) 

where 

Tb" - + 1 s J s I .  

Besides the three basic formulae stated above, we also derive the following two 
formulae to reassign the sites taking account of the particular neighbours (three 
neighbour sites already investigated, see 9 3) of the sites to be investigated. 

For the central site (e.g., the site M(3,2)) of b = 2,3,5,10 in figure 1 

M ( I ,  J )  = a positive integer (e.g., 8) (4) 

where I = 2bm-' + 1, J = bm='  + 1. 
For the sites M(4,2) ,  M(4,3)  for b = 3 and M(6,2) ,  . . . , M(6,5)  for b = 5 

M ( I ,  J )  = a positive integer (e.g., 8) ( 5 )  

where I = b" + 1, J = Tb"-' + 1. The integer 8 must be equal to the value of equation 
(4) because they belong to the same category of sites (see 9 3). One should also note, 
for b = 2, that (5) is eliminated. 

For the cutouts of lattices, the computer can automatically assign zero to the cutout 
sites. 

If b = 2 (for the S G ) ,  equations (2)-(4) will respectively become 

M ( I ,  J) = M ( I  -2"-1, J) 

2 " - ' + 2 s  I s 2"+ 1 ,1  s J s  I -2"-I, 

M (  I, J) = M ( I  -2"-', J -2m-')  

M( I ,  J )  = a  positive integer (e.g., 8) 

(2') 

where 

(3') 

where 2"- '+2< I s  2"+ 1,2"-'+ 1 s J < I, and 

(4') 

where I = 2" + 1, J = 2"-' + 1. 
As m is increased the translation and dilation of generators are alternately generated, 

and assignment processes for lattices are repeated by equations (1)-(5). Finally, the 
required lattice of Sierpinski-type fractal structures is formed. 

Here is an example to illustrate the method (ATDM) of construction by applying it 
to a Sierpinski-type fractal structure (b = 3, N = 2). 

According to ( l ) ,  when m = 1, D = 1, 3 =z I S  4 , 2  s J 6 I - 1 (i.e. when I = 3, J = 2; 
Z = 4, J = 2,3) we have M(3 ,2 )  = M (  1 , l )  = 1 and M(4 ,2 )  = M ( 2 , l )  = 7, M(4,3)  = 
M(2,2 )  = 2 (see figure 2(a)). 

From (2), 1 s  T S 2 ,  when T =  1, 1 = 3 ,  J =  1,2,  we get M(3, 1)=  M(2, l ) = 7 ,  
M(3,2)  = M(2,2)  = 2. When T = 2, I = 4, 1 S J S  2 (or J = 1,2),  we have M ( 4 , l )  = 
M ( 2 , l )  = 7, M(4,Z) = M(2,2)  = 2. So the translation towards the lower left is com- 
pleted (see figure 2(b)). 

For (3), when T = l ,  1 = 3 ,  2 s J s 3 ,  we obtain M ( 3 , 2 ) = M ( 2 , 1 ) = 7 ,  M ( 3 , 3 ) =  
M(2,2)  = 2. When T = 2, I = 4, 3 s J s 4 ,  we gain M(4,3)  = M(2, 1) = 7, M(4,4)  = 
M(2,2)  = 2. Then the translation towards the lower right is completed (see figure 2(c)). 
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For M(3,2)  and M(4,2),  M(4,3),  according to (4) and ( 5 )  we assign 8 to the 

If m = 2, the calculation processes are repeated by (1)-(5) and we obtain figure 2(e). 
We divide the sites on these lattices into four categories according to a consideration 

of generation and combination of clusters. The first category of sites is those whose 
values equal 1; the second equal 2; the third equal 8; and the fourth equal 7 (see figure 

sites; finally we obtain figure 2(d) .  

2(e)). 

3. Site occupation and cluster calculation on SG 

The SG lattice is formed by equations (2’)-(4’). Sites on SG are randomly occupied 
according to rows ( I )  and columns ( J ) .  The probabilities Pi ( i  = 1 ,2 ,3 , .  . .) are 
compared with a pseudorandom number Y(0-1). If Pi < Y, the site M(I ,  J )  is not 
occupied and is assigned as zero, otherwise a positive integer is assigned to the M(I ,  J). 
If the site M ( I ,  J )  is occupied, nearest-neighbouring sites already compared with Y 
are necessarily investigated to see whether they are occupied or not. If so, it belongs 
to the cluster composed of neighbouring sites and the serial number of the cluster is 
assigned to the site M ( I ,  J )  and the size of the cluster is increased by unity. If not, 
the site M(I ,  J) forms a new cluster (its size is l ) ,  and a new number which is greater 
than the last one by 1 is assigned to the new cluster, and so on. Two clusters coalesce 
into a greater cluster if two clusters are joined by (at least) a bond joining two sites 
which belong to different clusters. 

The first category of sites has no neighbouring site which has been earlier investi- 
gated; the second has two sites, M ( I , J - 1 )  and M ( I -  1, J -  1); the third has three, 
M(I ,J-11,  M(Z-1, J-1) and M ( I - 1 ,  J ) ;  the fourth has only one, M(Z-1 , J ) .  

If two clusters coalesce into a new greater cluster, the serial number (e.g., 3) of 
sites of the former cluster is changed to be the serial number (e.g., 5) of sites of the 
latter cluster. The size of the new cluster then is equal to the sum of the sizes of two 
clusters, and finally zero is assigned to the former cluster size. 

4. Critical percolation probability P, and discussions 

We applied the modified second moment 

defined by Dean [ 111, here Si ( i  = 1,2, .  . .) are the sizes of clusters and the summation 
runs over all the lattice clusters (including the largest cluster). 

According to Dean’s method, P, is taken to be that value of P at which A M I A P  
is a maximum, A indicating an increment of one step. Dean chose AM to be a constant 
value and found the value of P at which the corresponding increment AP was a 
minimum. And in the present work we choose AP to be a constant value (0.01) and 
set Pi ( i  = 1 ,2 , .  . .), so AP = Pi,1 - P i  and Mi ( i  = 1 ,2 , .  . .) is calculated from ( 6 ) .  The 
critical percolation probability is given by 

P,= max[(Miil - M i ) / A P J .  (7)  
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Table 1. Critical percolation probabilities f, on SG, uc is the standard deviation, U, is an 
error between the experimental value and that predicted from (8). 

~ ~~~ ~ 
~ ~~ 

Stage Experimental value Predicted value (8) 

N Pc * u c  pc ut 

3 0.724 0.089 0.667 -0.057 
4 0.770 0.101 0.750 -0.020 
5 0.802 0.023 0.800 -0.002 
6 0.820 0.032 0.833 +0.013 
7 0.882 0.031 0.857 -0.025 
8 0.885 0.016 0.875 -0.010 

I 
0 0.1 0.2 03 0.4 

1IN 

Figure 3. Plot of experimental values of P, against 1/ N on SG in two dimensions, compared 
with equation (8), P,= 1 - 1/N, indicated by the straight line. 

From the computation of the cluster-size distribution the critical percolation proba- 
bility can be obtained from (7). The results for various stages of SG are summarised 
in table 1, where the averages are taken over five runs. 

It can be seen from table 1 that the values of P, are increased with the increase of 
stages N and the standard deviations U, in P, are decreased with N although there 
are some small fluctuations in U,, 

We also plot P, against 1/ N in figure 3 and extrapolate the results for finite N to 
the limit N = CO, and find the intercept P, = 1 at N = CO. This supports the conclusion 
P, = 1. Furthermore, the relation of P, with 1/ N can be approximated by 

P, = 1 - 1/ N. (8) 
The errors between the experimental values and values predicted from (8) are well 
within U, (see table 1). 
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